Stability analysis of an incommensurate fractional-order SIR model
DOI:
https://doi.org/10.53391/mmnsa.2021.01.005Keywords:
SIR mathematical model, incommensurate order differential equation, fractional-derivative, stability analysisAbstract
In this paper, a fractional-order generalization of the susceptible-infected-recovered (SIR) epidemic model for predicting the spread of an infectious disease is presented. Also, an incommensurate fractional-order differential equations system involving the Caputo meaning fractional derivative is used. The equilibria are calculated and their stability conditions are investigated. Finally, numerical simulations are presented to illustrate the obtained theoretical results.
Downloads
References
Yavuz, M., Ozdemir, N. & Baskonus, H. Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel. The European Physical Journal Plus, 133(6), 1-11, (2018).
Kashkynbayev, A. & Rihan, F. Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay. Mathematics, 9(15), 1829, (2021).
Razminia, A., Majd, V. & Baleanu, D. Chaotic incommensurate fractional order Rössler system: active control and synchronization. Advances In Difference Equations, 2011(1), 1-12, (2011).
Ji, Y., Lu, J. & Qiu, J. Stability of equilibrium points for incommensurate fractional-order nonlinear systems. 2016 35th Chinese Control Conference (CCC), pp. 10453-10458, (2016, July).
Daşbaşi, B. Stability analysis of the hiv model through incommensurate fractional-order nonlinear system. Chaos, Solitons & Fractals, 137, 109870, (2020).
Deng, W., Li, C. & Guo, Q. Analysis of fractional differential equations with multi-orders. Fractals, 15(02), 173-182, (2007).
Hamou, A.A., Azroul, E. & Hammouch, Z. On dynamics of fractional incommensurate model of Covid-19 with nonlinear saturated incidence rate, medRxiv, (2021).
Wang, Y. & Li, T. Stability analysis of fractional-order nonlinear systems with delay. Mathematical Problems In Engineering, (2014).
Petras, I. Stability of fractional-order systems with rational orders. ArXiv Preprint ArXiv:0811.4102, (2008).
Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A. & Trujillo, J.J. Stability of fractional order systems. Mathematical Problems In Engineering, (2013).
Brandibur, O., Garrappa, R. & Kaslik, E. Stability of Systems of Fractional-Order Differential Equations with Caputo Derivatives. Mathematics, 9(8), 914, (2021).
Lekdee, N., Sirisubtawee, S. & Koonprasert, S. Bifurcations in a delayed fractional model of glucose–insulin interaction with incommensurate orders. Advances In Difference Equations, 2019(1), 1-22, (2019).
Debbouche, N., Ouannas, A., Batiha, I.M. & Grassi, G. Chaotic Dynamics in a Novel COVID-19 Pandemic Model Described by Commensurate and Incommensurate Fractional-Order Derivatives. (2021).
Wang, X., Wang, Z. & Xia, J. Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders. Journal Of The Franklin Institute, 356(15), 8278-8295, (2019).
Veeresha, P. A Numerical Approach to the Coupled Atmospheric Ocean Model Using a Fractional Operator. Mathematical Modelling and Numerical Simulation with Applications (MMNSA), 1(1), 1-10, (2021).
Yavuz, M., & Yaşkıran, B. Conformable Derivative Operator in Modelling Neuronal Dynamics. Applications & Applied Mathematics, 13(2), 803-817, (2018).
Yokuş, A. Construction of Different Types of Traveling Wave Solutions of the Relativistic Wave Equation Associated with the Schrödinger Equation. Mathematical Modelling and Numerical Simulation with Applications (MMNSA), 1(1), 24-31, (2021).
Yavuz, M., & Sene, N. Fundamental calculus of the fractional derivative defined with Rabotnov exponential kernel and application to nonlinear dispersive wave model. Journal of Ocean Engineering and Science, 6(2), 196-205, (2021).
Hammouch, Z., Yavuz, M., & Özdemir, N. Numerical Solutions and Synchronization of a Variable-Order Fractional Chaotic System. Mathematical Modelling and Numerical Simulation with Applications (MMNSA), 1(1), 11-23, (2021).
Sene, N. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Journal of Fractional Calculus and Nonlinear Systems, 2(1), 60-75, (2021).
Al-Mdallal, Q.M., Hajji, M.A., & Abdeljawad, T. On the iterative methods for solving fractional initial value problems: new perspective. Journal of Fractional Calculus and Nonlinear Systems, 2(1), 76-81, (2021).
Yavuz, M., Coşar, F. Ö., Günay, F., & Özdemir, F. N. A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign. Open Journal of Modelling and Simulation, 9(3), 299-321, (2021).
Yavuz, M., Sulaiman, T.A., Yusuf, A. & Abdeljawad, T. The Schrödinger-KdV equation of fractional order with Mittag-Leffler nonsingular kernel. Alexandria Engineering Journal, 60(2), 2715-2724, (2021).
Nazir, G., Zeb, A., Shah, K., Saeed, T., Khan, R.A. & Khan, S.I.U. Study of COVID-19 mathematical model of fractional order via modified Euler method. Alexandria Engineering Journal, 60(6), 5287-5296, (2021).
Zarin, R., Ahmed, I., Kumam, P., Zeb, A. & Din, A. Fractional modeling and optimal control analysis of rabies virus under the convex incidence rate. Results in Physics, 28, 104665, (2021).
Alqudah, M.A., Abdeljawad, T., Zeb, A., Khan, I.U. & Bozkurt, F. Effect of Weather on the Spread of COVID-19 Using Eigenspace Decomposition. Cmc-Computers Materials & Continua, 3047-3063, (2021).
Angstmann, C.N., Henry, B.I. & McGann, A.V. A fractional-order infectivity and recovery SIR model. Fractal And Fractional, 1(1), 11, (2017).
Liu, N., Fang, J., Deng, W. & Sun, J.W. Stability analysis of a fractional-order SIS model on complex networks with linear treatment function. Advances In Difference Equations, 2019(1), 1-10, (2019).
Alqahtani, R.T. Mathematical model of SIR epidemic system (COVID-19) with fractional derivative: stability and numerical analysis. Advances In Difference Equations, 2021(1), 1-16 (2021).
Naik, P.A., Yavuz, M., Qureshi, S., Zu, J. & Townley, S. Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. The European Physical Journal Plus, 135(10), 1-42, (2020).
Tavares, D., Almeida, R. & Torres, D.F. Caputo derivatives of fractional variable order: numerical approximations. Communications In Nonlinear Science And Numerical Simulation, 35, 69-87, (2016).
Tavazoei, M.S. & Haeri, M. Chaotic attractors in incommensurate fractional order systems. Physica D: Nonlinear Phenomena, 237(20), 2628-2637, (2008).
Odibat, Z.M. Analytic study on linear systems of fractional differential equations. Computers & Mathematics With Applications, 59(3), 1171-1183, (2010).
Owolabi, K.M. Riemann-Liouville fractional derivative and application to model chaotic differential equations. Progress in Fractional Differentiation and Applications, 4, 99-110, (2018).
Alshomrani, A.S., Ullah, M.Z. & Baleanu, D. Caputo SIR model for COVID-19 under optimized fractional order. Advances In Difference Equations, 2021(1), 1-17, (2021).
Daşbaşı, B. & Öztürk, İ. Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response. SpringerPlus, 5(1), 1-17, (2016).
Daşbaşı, B. Stability analysis of mathematical model including pathogen-specific immune system response with fractional-order differential equations. Computational And Mathematical Methods In Medicine, (2018).
Daşbaşı, B. Çoklu Kesirli Mertebeden Diferansiyel Denklem Sistemlerinin Kalitatif Analizi, Analizdeki Bazi Özel Durumlar ve Uygulamasi: Av-Avci Modeli. Fen Bilimleri ve Matematik’te Akademik Araştırmalar (1. B., S. 127-157). Içinde Ankara: Gece Kitaplığı, (2018).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bahatdin Daşbaşı
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in MMNSA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in MMNSA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.