A model for COVID-19 and bacterial pneumonia coinfection with community- and hospital-acquired infections


  • Angel G. Cervantes Pérez Facultad de Matemáticas, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico https://orcid.org/0000-0002-6273-2405
  • David Adeyemi Oluyori Department of Mathematics, School of Physical Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria https://orcid.org/0000-0002-8348-6717




coronavirus, bacterial pneumonia, coinfection


We propose a new epidemic model to study the coinfection dynamics of COVID-19 and bacterial pneumonia, which is the first model in the literature used to describe mathematically the interaction of these two diseases while considering two infection ways for pneumonia: community-acquired and hospital-acquired transmission. We show that the existence and local stability of equilibria depend on three different parameters, which are interpreted as the basic reproduction numbers of COVID-19, bacterial pneumonia, and bacterial population in the hospital. Numerical simulations are performed to complement our theoretical analysis, and we show that both diseases can persist if the basic reproduction number of COVID-19 is greater than one.


Download data is not yet available.


Nasir, N., Rehman, F., & Omair, S.F. Risk factors for bacterial infections in patients with moderate to severe COVID-19: A case-control study. Journal of medical virology, 93(7), 4564-4569, (2021).

Mirzaei, R., Goodarzi, P., Asadi, M., Soltani, A., Aljanabi, H.A.A., Jeda, A.S., ... & Karampoor, S. Bacterial co-infections with SARS-CoV-2. IUBMB life, 72(10), 2097-2111, (2020).

National Health Service, Respiratory tract infections (RTIs), https://www.nhs.uk/conditions/respiratory-tract-infection/ Access date: 19 November 2022.

Hegazy, N.N., Mahrous, O.A., & Salah, M.A. An overview of respiratory tract infections in preschool children in primary healthcare. Menoufia Medical Journal, 31(3), 862, (2018).

Morens, D.M., Taubenberger, J.K., & Fauci, A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. The Journal of infectious diseases, 198(7), 962-970, (2008).

MacIntyre, C.R., Chughtai, A.A., Barnes, M., Ridda, I., Seale, H., Toms, R., & Heywood, A. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a (H1N1) pdm09. BMC infectious diseases, 18(1), 1-20, (2018).

Kumar, R., Bhattacharya, B., Meena, V., Soneja, M., & Wig, N. COVID-19 and TB co-infection-’Finishing touch”in perfect recipe to’severity’or ‘death’. Journal of Infection, 81(3), e39-e40, (2020).

Lansbury, L., Lim, B., Baskaran, V., & Lim, W.S. Co-infections in people with COVID-19: a systematic review and metaanalysis. Journal of Infection, 81(2), 266-275, (2020).

Cox, M.J., Loman, N., Bogaert, D., & O’Grady, J. Co-infections: potentially lethal and unexplored in COVID-19. The Lancet Microbe, 1(1), e11, (2020).

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., ... & Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet, 395(10229), 1054-1062, (2020).

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... & Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet, 395(10223), 507-513, (2020).

Rawson, T.M., Moore, L.S., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., ... & Holmes, A. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clinical infectious diseases, 71(9), 2459-2468, (2020).

Bernoulli, D. Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir. Histoire de l’Acad., Roy. Sci.(Paris) avec Mem, 1-45, (1760).

Ross, R. The prevention of malaria. John Murray, (1911).

Ross, R. An application of the theory of probabilities to the study of a priori pathometry.—Part I. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 92(638), 204-230, (1916).

Ross, R., & Hudson, H.P. An application of the theory of probabilities to the study of a priori pathometry.-Part II. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 93(650), 212-225, (1917).

Ross, R., & Hudson, H.P. An application of the theory of probabilities to the study of a priori pathometry.—Part III. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 93(650), 225-240, (1917).

Kermack, W.O., & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proceedings of the royal society of London. Series A, Containing papers of a mathematical and physical character, 115(772), 700-721, (1927).

House, T., & Keeling, M.J. Deterministic epidemic models with explicit household structure. Mathematical biosciences, 213(1), 29-39, (2008).

Becker, N. The uses of epidemic models. Biometrics, 35(1), 295-305, (1979).

Hethcote, H.W. The mathematics of infectious diseases. SIAM review, 42(4), 599-653, (2000).

Lee, G., Yoon, S.E., & Shin, K. Simple epidemic models with segmentation can Be better than complex ones. Plos one, 17(1), e0262244, (2022).

Allegretti, S., Bulai, I.M., Marino, R., Menandro, M.A., & Parisi, K. Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. Mathematical Modelling and Numerical Simulation with Applications, 1(2), 56-66, (2021).

Ikram, R., Khan, A., Zahri, M., Saeed, A., Yavuz, M., & Kumam, P. Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay. Computers in Biology and Medicine, 141, 105115, (2022).

Sinan, M., Leng, J., Anjum, M., & Fiaz, M. Asymptotic behavior and semi-analytic solution of a novel compartmental biological model. Mathematical Modelling and Numerical Simulation with Applications, 2(2), 88-107, (2022).

Yavuz, M., Coşar, F.Ö., Günay, F., & Özdemir, F.N. A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign. Open Journal of Modelling and Simulation, 9(3), 299-321, (2021).

Özköse, F., & Yavuz, M. Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey. Computers in biology and medicine, 141, 105044, (2022).

Özköse, F., Yavuz, M., Şenel, M.T., & Habbireeh, R. Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Chaos, Solitons & Fractals, 157, 111954, (2022).

Orozco, J.A.M., Tinajero, Á.S., Vargas, E.B., Cueva, A.I.D., Escobar, H.R., Alcocer, E.V., ... & Santillán, D.P.R. COVID-19 and tuberculosis coinfection in a 51-year-old taxi driver in Mexico city. The American journal of case reports, 21, e927628-1, (2020).

Tadolini, M., Codecasa, L.R., García-García, J.M., Blanc, F.X., Borisov, S., Alffenaar, J.W., ... & Migliori, G.B. Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases. European Respiratory Journal, 56(1), (2020).

Yadav, S., & Rawal, G. The case of pulmonary tuberculosis with COVID-19 in an Indian male-a first of its type case ever reported from South Asia. Pan African Medical Journal, 36(1), (2020).

Khurana, A.K., & Aggarwal, D. The (in) significance of TB and COVID-19 co-infection. European Respiratory Journal, 56(2), (2020).

Petrone, L., Petruccioli, E., Vanini, V., Cuzzi, G., Gualano, G., Vittozzi, P., ... & Goletti, D. Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to SARS-CoV-2. International Journal of Infectious Diseases, 113, S82-S87, (2021).

Lew, S., Manes, P., & Smith, B. Coinfection with SARS-CoV-2 and influenza A virus in a 32-year-old man. The American Journal of Case Reports, 21, e926092-1, (2020).

Jing, R., Vunnam, R.R., Schnaubelt, E., Vokoun, C., Cushman-Vokoun, A., Goldner, D., & Vunnam, S.R. Co-infection of COVID-19 and influenza A in a hemodialysis patient: a case report. BMC Infectious Diseases, 21(1), 1-6, (2021).

Fahim, M., Ghonim, H.A.E.S., Roshdy, W.H., Naguib, A., Elguindy, N., AbdelFatah, M., ... & Eid, A. Coinfection with SARS-CoV-2 and influenza A (H1N1) in a patient seen at an influenza-like illness surveillance site in Egypt: case report. JMIR public health and surveillance, 7(4), e27433, (2021).

Xiang, X., Wang, Z.H., Ye, L.L., He, X.L., Wei, X.S., Ma, Y.L., ... & Zhou, Q. Co-infection of SARS-COV-2 and influenza A virus: a case series and fast review. Current Medical Science, 41(1), 51-57, (2021).

Ata, F., Yousaf, Q., Parambil, J.V., Parengal, J., Mohamedali, M.G., & Yousaf, Z. A 28-year-old man from India with SARSCov-2 and pulmonary tuberculosis co-infection with central nervous system involvement. The American journal of case reports, 21, e926034-1, (2020).

Elhazmi, A., Al-Tawfiq, J.A., Sallam, H., Al-Omari, A., Alhumaid, S., Mady, A., & Al Mutair, A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) coinfection: A unique case series. Travel Medicine and Infectious Disease, 41, 102026, (2021).

Giannella, M., Rinaldi, M., Tesini, G., Gallo, M., Cipriani, V., Vatamanu, O., ... & Curti, S. Predictive model for bacterial coinfection in patients hospitalized for COVID-19: A multicenter observational cohort study. Infection, 50, 1243–1253, (2022).

Soni, B., & Singh, S. COVID-19 co-infection mathematical model as guided through signaling structural framework. Computational and Structural Biotechnology Journal, 19, 1672-1683, (2021).

Tchoumi, S.Y., Diagne, M.L., Rwezaura, H., & Tchuenche, J.M. Malaria and COVID-19 co-dynamics: A mathematical model and optimal control. Applied mathematical modelling, 99, 294-327, (2021).

Bandekar, S.R., & Ghosh, M. A co-infection model on TB-COVID-19 with optimal control and sensitivity analysis. Mathematics and Computers in Simulation, 200, 1-31, (2022).

Rwezaura, H., Diagne, M.L., Omame, A., de Espindola, A.L., & Tchuenche, J.M. Mathematical modeling and optimal control of SARS-CoV-2 and tuberculosis co-infection: a case study of Indonesia. Modeling Earth Systems and Environment, 8(4), 5493-5520, (2022).

Omame, A., Rwezaura, H., Diagne, M.L., Inyama, S.C., & Tchuenche, J.M. COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis. The European Physical Journal Plus, 136(10), 1-33, (2021).

Omame, A., Nwajeri, U.K., Abbas, M., & Onyenegecha, C.P. A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function. Alexandria Engineering Journal, 61(10), 7619-7635, (2022).

Sampson, S. and De Pietro, M. What to know about bacterial pneumonia, https://www.medicalnewstoday.com/articles/312565, Access date: 31 August 2022.

Sethi, S. Hospital-acquired pneumonia, https://www.msdmanuals.com/home/lung-and-airway-disorders/pneumonia/hospital-acquired-pneumonia, Access date: 31 August 2022.

Ansari, S., Hays, J.P., Kemp, A., Okechukwu, R., Murugaiyan, J., Ekwanzala, M.D., ... & van Dongen, M.B. The potential impact of the COVID-19 pandemic on global antimicrobial and biocide resistance: an AMR Insights global perspective. JACAntimicrobial Resistance, 3(2), dlab038, (2021).

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506, (2020).

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., ... & Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 323(11), 1061-1069, (2020).

Van den Driessche, P., & Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180(1-2), 29-48, (2002).

Chicone, C. Types of Differential Equations. Ordinary Differential Equations with Applications (Vol. 34). Springer: New York, (1999).

Oluyori, D.A., Adebayo, H.O., & Pérez, Á.G. Global analysis of an SEIRS model for COVID-19 capturing saturated incidence with treatment response. Applications and Applied Mathematics: An International Journal (AAM), 16(2), 9, (2021).




How to Cite

Pérez, A. G. C., & Oluyori, D. A. (2022). A model for COVID-19 and bacterial pneumonia coinfection with community- and hospital-acquired infections. Mathematical Modelling and Numerical Simulation With Applications, 2(4), 197–210. https://doi.org/10.53391/mmnsa.2022.016



Research Articles