Ion temperature gradient modes driven soliton and shock by reduction perturbation method for electron-ion magneto-plasma

Authors

DOI:

https://doi.org/10.53391/mmnsa.2022.01.001

Keywords:

Ion temperature gradient, soliton, shock, electron-ion plasma, reduction perturbation method, linear and non-linear structures

Abstract

In our observation, we have used an easy and reliable approach of the reduction perturbation method to obtain the solution of the ion temperature gradient mode driven linear and nonlinear structures of relatively small amplitude. One can use that methodology in the more complex environment of the plasma and can obtain a straightforward approach toward his studies. We have studied different parameter impacts on the linear and nonlinear modes of the ITG by using data from tokamak plasma. Hence, our study is related to the tokamak plasma and one that can apply to the nonlinear electrostatic study of stiller and interstellar regimes where such types of plasma environment occur.

Downloads

Download data is not yet available.

References

Goertz, C.K. Dusty plasmas in the solar system. Reviews of Geophysics, 27(2), 271-292, (1989).

Havnes, O., Melandsø, F., La Hoz, C., Aslaksen, T.K., & Hartquist, T. Charged dust in the Earth’s mesopause; effects on radar backscatter. Physica Scripta, 45(5), 535, (1992).

Horanyi, M., & Mendis, D.A. The effects of electrostatic charging on the dust distribution at Halley’s comet. The Astrophysical Journal, 307, 800-807, (1986).

Rudakov, L.I., & Sagdeev, R.D.Z. On the instability of a nonuniform rarefied plasma in a strong magnetic field. In Soviet Physics Doklady, 6, 415, (1961, November).

Coppi, B., Rosenbluth, M.N., Sagdeev, R.Z. Instabilities due to Temperature Gradients in Complex Magnetic Field Configurations. The Physics of Fluids, 10(3), 582-587, (1967).

Horton Jr, W., Choi, D.I., & Tang, W.M. Toroidal drift modes driven by ion pressure gradients. The Physics of Fluids, 24(6), 1077-1085, (1981).

Pogutse, P.O. In Soviet Physics Doklady. 25, 498, (1967).

Hahm, T.S., & Tang, W.M. Properties of ion temperature gradient drift instabilities in H-mode plasmas. Physics of Fluids B: Plasma Physics, 1(6), 1185-1192, (1989).

Guzdar, P.N., Chen, L., Tang, W.M., & Rutherford, P.H. Ion-temperature-gradient instability in toroidal plasmas. The Physics of Fluids, 26(3), 673-677, (1983).

Jerman, A., Anderson, D., & Weiland, J. Chemiluminescent determination of adenosine, inosine, and hypoxanthine/xanthine. Nucl. Fusion, 27, 6, (1987).

Shukla, P.K. Study of toroidal ion temperature gradient electrostatic drift waves. Physica Scripta, 42(6), 725, (1990).

Shukla, P.K., & Weiland, J. Ion-temperature-gradient driven drift vortex in an inhomogenous magnetic field. Physics Letters A, 136(1-2), 59-62, (1989).

Zakir, U., Haque, Q., Qamar, A., & Mirza, A.M. Ion-temperature-gradient driven modes in dust-contaminated plasma with nonthermal electron distribution and dust charge fluctuations. Astrophysics and Space Science, 350(2), 565-572, (2014).

Adnan, M., Mahmood, S., & Qamar, A. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas. Physics of Plasmas, 21(9), 092119, (2014).

Zakir, U., Haque, Q., Imtiaz, N., & Qamar, A. Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation. Journal of Plasma Physics, 81(6), (2015).

Shukla, P.K., & Stenflo, L. Periodic structures on an ionic-plasma-vacuum interface. Physics of plasmas, 12(4), 044503, (2005).

Zakir, U., Adnan, M., Haque, Q., Qamar, A., & Mirza, A.M. Ion temperature gradient mode driven solitons and shocks. Physics of Plasmas, 23(4), 042104, (2016).

Mirza, A.M., Masood, W., Iqbal, J., & Batool, N. Toroidal ion-temperature-gradient driven vortices in an inhomogeneous magnetoplasma with non-Maxwellian electrons. Physics of Plasmas, 22(9), 092313, (2015).

Temerin, M., Cerny, K., Lotko, W., & Mozer, F.S. Observations of double layers and solitary waves in the auroral plasma. Physical Review Letters, 48(17), 1175, (1982).

Bostro¨m, R., Gustafsson, G., Holback, B., Holmgren, G., Koskinen, H., & Kintner, P. Characteristics of solitary waves and weak double layers in the magnetospheric plasma. Physical review letters, 61(1), 82, (1988).

Block, L.P., & Fa¨lthammar, C.G. The role of magnetic-field-aligned electric fields in auroral acceleration. Journal of Geophysical Research: Space Physics, 95(A5), 5877-5888, (1990).

Nielsen, A.H., Rasmussen, J.J., & Schmidt, M.R. Self-organization and coherent structures in plasmas and fluids. Physica Scripta, 1996(T63), 49, (1996).

Sabry, R., Moslem, W.M., Haas, F., Ali, S., & Shukla, P.K. Nonlinear structures: Explosive, soliton, and shock in a quantum electronpositron-ion magnetoplasma. Physics of Plasmas, 15(12), 122308, (2008).

Oraevskii V.N., Tasso H. & Wobig H. (1984). Plasma Physics and Controlled Nuclear Fussion Research. International Atomic Energy Agency Vienna.

Horton, W. Nonlinear drift waves and transport in magnetized plasma. Physics Reports, 192(1-3), 1-177, (1990).

Tasso, H. On drift wave spectra in 1D and 2D. Il Nuovo Cimento B (1971-1996), 109(2), 207-209, (1994).

Meiss, J.D., & Horton, W. Fluctuation spectra of a drift wave soliton gas. The Physics of Fluids, 25(10), 1838-1843, (1982).

Salat, A. Is the temperature gradient or the derivative of the density gradient responsible for drift solitons?. Plasma physics and controlled fusion, 32(14), 1337, (1990).

Lashkin, V.M. Stable three-dimensional Langmuir vortex soliton. Physics of Plasmas, 27(4), 042106, (2020).

Khan, M.Y., Manzoor, M.Q., Ul Haq, A., & Iqbal, J. Effect of entropy on anomalous transport in ITG-modes of magneto-plasma. Nuclear Fusion, 57(4), 046027, (2017).

Yaqub Khan, M., & Iqbal, J. Effect of entropy on soliton profile in ITG driven magneto-plasma. Physics of Plasmas, 24(8), 082514, (2017).

Iqbal, J., & Khan, M.Y. Soliton formation in ion temperature gradient driven magneto-plasma. Physics of Plasmas, 24(4), 042506, (2017).

Khan, A., Zakir, U., & Haque, Q. Ion Temperature Gradient Mode–Driven Solitary and Shock Waves in Electron-Positron-Ion Magnetized Plasma. Brazilian Journal of Physics, 50(4), 430-437, (2020).

Rehan, M., Zakir, U., Haque, Q., & Hameed, G. Ion temperature gradient mode driven solitons and shocks in superthermal plasma. Chinese Journal of Physics, 68, 908-918, (2020).

Khan, A., Zakir, U., Haque, Q. & Qamar, A. Role of entropy in ηi-mode driven nonlinear structures obtained by homotopy perturbation method in electron–positron–ion plasma. Zeitschrift fur Naturforschung A , 76(8), 671-681, (2021).

Zabusky, N.J. A synergetic approach to problems of nonlinear dispersive wave propagation and interaction. In Nonlinear partial differential equations. Academic Press. 223-258, (1967).

Zabusky, N.J., & Kruskal, M.D. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Physical review letters, 15(6), 240, (1965).

Taniuiti, T., & Wei, C.C. Journal of the Physical Society of Japan, 10, 941-952, (1968).

Washimi, H., & Taniuiti, T. Propagation of Ion-Acoustic Solitary Waves of Small Amplitude. Physical Review Letters, 17(19), 996-1002, (1966).

Kuninaka, H., & Hayakawa, H. Contact and Quasi-Static Impact of a Dissipationless Mechanical Model. Journal of the Physical Society of Japan, 75, 1-5, (2006).

Zakharov, V.E. & Kuznetsov, E.A. Three-dimensional solitons. Soviet Physics—JETP, 39(2), 285-290, (1974).

Saleem, H., & Batool, N. Nonlinear structures of drift waves in pair-ion-electron plasmas. Physics of Plasmas, 16(2), 022302, (2009).

Weiland, J. Collective Modes in Inhomogeneous Plasma: Kinetic and Advanced Fluid Theory IOP. Bristol, Philadelphia, (2000).

Washimi, H., & Taniuti, T. Propagation of ion-acoustic solitary waves of small amplitude. Physical Review Letters, 17(19), 996, (1966).

Downloads

Published

2022-01-22
CITATION METRICS
DOI: 10.53391/mmnsa.2022.01.001

How to Cite

Khan, A., Khan, A., & Sinan, M. (2022). Ion temperature gradient modes driven soliton and shock by reduction perturbation method for electron-ion magneto-plasma. Mathematical Modelling and Numerical Simulation With Applications, 2(1), 1–12. https://doi.org/10.53391/mmnsa.2022.01.001

Issue

Section

Research Articles